CITY OF MARGARET PUBLIC WORKS DEPARTMENT

POST OFFICE BOX 207 MARGARET, ALABAMA 35112 TELEPHONE (205 629-7001)

2022 CONSUMER CONFIDENCE REPORT INFORMATION

COUNCIL MEMBERS:

MAYOR ISAAC C. HOWARD III DARYL MCINTYRE DARIUS CRUMP JAMES CHAPMAN MATTHEW TORTORICE JONATHAN RAY

WATER CLERK:

Amanda McCurdy

THE CITY OF MARGARET PUBLIC WORKS DEPARTMENT P.O. BOX 207

MARGARET, ALABAMA 35112 ANNUAL DRINKING WATER OUALITY REPORT 2022

Dear Resident:

We are pleased to present to you this year's *Annual Drinking Water Quality Report*. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. We purchase a portion of our water from Odenville Utility Board, Trussville Gas and Water, and Coosa Valley Water Supply District. We draw ground water from six of their wells. Locations are Well #3 Section 29, T16-S. R-2-E St. Clair County, AL. Well #4 Section 31, T-15-S, R-3-E St. Clair County, AL Well #5 Section 12, T-16-S R-2-E St. Clair County, AL. Well #7 Section 29, T-15-S, R-3-E St. Clair County, AL. Well #8 Section 14, T-16-S, R-2-E, St. Clair County, AL. Well #9 Section 20, T-14-S, R-5-E St. Clair County, AL.

Well Aquifer's Listing: Well #3 Fort Payne, chert-Tuscumbia Limestone, Well #4 Bangor Limestone. Well #5 Bagor Limestone-Hartselle Sandstone. Well #7 Hartselle Sandstone. Well #8 Floyd Shale. Well #9 Floyd Shale.

The City of Margaret Public Works Dept. routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of Jan 1st to December 31, 2022. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Please contact **Isaac C. Howard III, Water Superintendent** (205 629-7001), if you have any questions about this report or concerning your water utility. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled Council meetings, held on the 1st and 3rd Tuesday of each month, at 6:00 p.m. at the Margaret City Hall.

We at The City of Margaret Public Works Department work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

A source water assessment plan has been completed and is available for inspection at the Odenville Utility Board during regular business hours.

A Wellhead Protection Plan has been completed and is available for inspection at the Odenville Utilities Board.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for any of these contaminants was not required. Two voluntary samples were taken by Odenville Utility Board in 1991 with both samples being negative for asbestos fibers.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA (Environmental Protection Agency)/CDC (Center of Disease Control) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). All Drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It is important to remember that the presence of these constituents does not necessarily pose a health risk.

Sincerely, Isaac C. Howard III Water Operator

Mayor: Isaac C. Howard III

Council Members: Matthew Tortorice, Jonathan Ray, Darius Crump, Daryl McIntyre and James Chapman

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we have provided the following definitions:

	PLAIN LANGUAGE DEFINITION
Not Deguired (ND)	
Not Required (NR)	Laboratory analysis not required due to waiver granted by the Environmental Protection Agency for the State of Alabama.
Parts per million	One part per million corresponds to one minute in two years or a single poppy in \$40,000
(ppm) Parts per billion	One part per million corresponds to one minute in two years or a single penny in \$10,000.
	One part has hillion partagonande to any princte in 2 000 years, as a single paper in \$40,000,000
(ppb) Parts per trillion	One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
(ppt)	One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in 10,000,000,000.
Parts per quadrillion	or ite part per trillion corresponds to one minute in 2,000,000 years, or a single periny in 10,000,000,000.
(ppq)	One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000
Picocuries per liter	orie part per quadrimon corresponds to one minute in 2,000,000,000 years or one pering in 310,000,000,000
(pC/L)	Picocuries per liter is a measure of the radioactivity in water.
Millirems per year	Procuries per liter is a measure of the radioactivity in water.
(mrem/yr)	Measure of radiation absorbed by the body.
Nephelometric	Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the
Turbidity Unit (NTU)	average person.
Variances &	average person.
Exemptions (V&E)	State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
Exemptions (V&E)	The concentration of a contaminant w hich, if exceeded, triggers treatment or other requirements w hich a water system
Action Level – (AL)	must follow.
Treatment	inactionew.
Technique (TT)	A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.
Maximum	The definition in the definition of the desired process interface to the lover of a contaminant in drinking water.
Contaminant Level	The "Maximum Allow ed" (MCL) is the highest level of a contaminant that is allow ed in drinking water. MCLs are set as
(MCL)	close to the MCLGs as feasible using the best available treatment technology.
Maximum	blood to the Mozes do readilist deling the sect dramatic heathern technology.
Contaminant Level	The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to
Goal (MCLG)	health. MCLGs allow for a margin of safety.
Maximum Residual	industrial medical and the district carety.
Disinfectant Level	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not
Goal or MRDLG	reflect the benefits of the use of disinfectants to control microbial contaminants.
Maximum Residual	
	The highest level of a disinfectant allow ed in drinking water. There is convincing evidence that addition of a disinfectant is
MRDL	necessary for control of microbial contaminants.
	Contaminants that may be present in source water include:
Microbial contaminan	its, such as viruses and bacteria, w hich may come from sew age treatment plants, septic systems, agricultural livestock ope
	nts, such as salts and metals, which can be naturally-occurring or result from urban storm water run-off, industrial or domes
	cides, which may come from a variety of sources such as agriculture, storm water run-off, and residential uses.
	ptaminants, including synthetic and voletile organic chemicals, which are by products of industrial processes and potroloum

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

The tables below list all the drinking water contaminants that were detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or ADEM requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Margaret Public Works Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drink

Table of Primary Contaminants

At high levels some primary contaminants are known to pose a health risk to humans. This table provides a quick glance of any primary contaminant detections

CONTAMINANT	MCL	AMOUNT DETECTE D	CONTAMINANT	MC L	AMOUNT DETECTE D	CONTAMINANT	MC L	AMOUNT DETECTE D
Bacteriological			Selenium(ppb)	50	ND	Epichlorohydrin	TT	ND
Total Coliform Bacteria	< 5%	ND	Thallium(ppb)	2	ND	Ethylbenzene(ppb)		ND
Turbidity	TT	0.74	Organic Chemicals			Ethylene dibromide(ppt)	50	ND
Fecal Coliform & E. coli	0	ND	Acrylamide	TT	ND	Glyphosate(ppb)	700	ND
Radiological			Alachlor(ppb)	2	ND	Haloacetic Acids(ppb)	60	5.6
Beta/photon			7 Haemor(ppo)		TVD	Traioacette reias(ppo)	- 00	3.0
emitters (mrem/yr)	4	ND	Atrazine(ppb)	3	ND	Heptachlor(ppt)	400	ND
Alpha emitters (pci/l)	15	0.56	Benzene(ppb)	5	ND	Heptachlor epoxide(ppt)	200	ND
Combined radium (pci/l)	5	0.25	Benzo(a)pyrene[PHAs](ppt)	200	ND	Hexachlorobenzene(ppb)	1	ND
Uranium(pci/l)	30	ND	Carbofuran(ppb)	40	ND	Hexachlorocyclopentadiene(ppb)	50	ND
Inorganic			Carbon Tetrachloride(ppb)	5	ND	Lindane(ppt)	200	ND
Antimony (ppb)	6	ND	Chlordane(ppb)	2	ND	Methoxychlor(ppb)	40	ND
Arsenic (ppb)	10	ND	Chlorobenzene(ppb)	100	ND	Oxamyl [Vydate](ppb)	200	ND
Asbestos (MFL)	7	ND	2,4-D	70	ND	Pentachlorophenol(ppb)	1	ND
Barium (ppm)	2	0.038	Dalapon(ppb)	200	ND	Picloram(ppb)	500	ND
Beryllium (ppb)	4	ND	Dibromochloropropane(p pt)	200	ND	PCBs(ppt)	500	ND
Bromate(ppb)	10	ND	0-Dichlorobenzene(ppb)	600	ND	Simazine(ppb)	4	ND
Cadmium (ppb)	5	ND	p-Dichlorobenzene(ppb)	75	ND	Styrene(ppb)	100	ND
Chloramines(pp m)	4	ND	1,2-Dichloroethane(ppb)	5	ND	Tetrachloroethylene(ppb)	5	ND
Chlorine(ppm)	4	1.60	1,1- Dichloroethylene(ppb)	7	ND	Toluene(ppm)	1	ND
Chlorine dioxide(ppb)	800	ND	Cis-1,2- Dichloroethylene(ppb)	70	ND	TOC	TT	1.6
Chlorite(ppm)	1	ND	trans-1,2- Dichloroethylene(ppb)	100	ND	TTHM(ppb)	80	16.6
Chromium (ppb)	100	ND	Dichloromethane(ppb)	5	ND	Toxaphene(ppb)	3	ND
Copper (ppm)	AL=1.	0.86	1,2- Dichloropropane(ppb)	5	ND	2,4,5-TP (Silvex)(ppb)	50	ND
Cyanide (ppb)	200	ND	Di-(2- ethylhexyl)adipate(ppb)	400	ND	1,2,4-Trichlorobenzene(ppb)	70	ND
Fluoride (ppm)	4	0.72	Di(2- ethylhexyl)phthlates(ppb)	6	ND	1,1,1-Trichloroethane(ppb)	200	ND
Lead (ppb)	AL=1 5	0.003	Dinoseb(ppb)	7	ND	1,1,2-Trichloroethane(ppb)	5	ND
Mercury (ppb)	2	ND	Dioxin[2,3,7,8- TCDD](ppq)	30	ND	Trichloroethylene(ppb)	5	ND
Nitrate (ppm)	10	0.69	Diquat(ppb)	20	ND	Vinyl Chloride(ppb)	2	ND
Nitrite (ppm)	1	ND	Endothall(ppb)	100	ND	Xylenes(ppm)	10	ND
Total Nitrate & Nitrite	10	0.69	Endrin(ppb)	2	ND			

Table of Secondary and Unregulated Contaminants

Secondary Drinking Water Standards are guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. ADEM has Secondary Drinking Water Standards established in state regulations applicable to water systems required to monitor for the various components. Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

CONTAMINANT	MCL	DETECT	CONTAMINANT	MCL	DETECT	CONTAMINANT	MC L	DETECT	
Secondary									
Aluminum	0.2	.034	Foaming Agents	0.5	ND	Silver	7	ND	
Chloride	250	19.7	Iron	0.3	ND	Sulfate	70	10.3	
Color (PCU)	15	ND	Magnesium	75	ND	Total Dissolved Solids	500	256.00	
Copper	1	.002	Odor (T.O.N.)	5	ND	Zinc	5	0.3	
		ı	Spe	ecial					
Calcium	N/A	ND	pH (SU)	N/A	8.30	Temperature (*C)	N/ A	ND	
Carbon Dioxide	N/A	ND	Sodium	N/A	ND	Total Alkalinity	N/ A	ND	
Manganese	0.05	ND	Specific Conductance (umhos)	<50 0	ND	Total Hardness (as CaCO3)	N/ A	161.00	
			Unreg	ulated					
1,1 - Dichloropropene	N/A	ND	Bromobenzene	N/A	ND	Hexachlorobutadiene	N/ A	ND	
1,1,2,2- Tetrachloroethane	N/A	ND	Bromochloromethane	N/A	ND	Isoprpylbenzene	N/ A	ND	
1,1- Dichloroethane	N/A	ND	Bromodichloromethane	N/A	1.71	M-Dichlorobenzene	N/ A	ND	
1,2,3 - Trichlorobenzene	N/A	ND	Bromoform	N/A	ND	Methomyl	N/ A	ND	
1,2,3 - Trichloropropane	N/A	ND	Bromomethane	N/A	ND	Metolachlor	N/ A	ND	
1,2,4 - Trimethylbenzene	N/A	ND	Butachlor	N/A	ND	Metribuzin	N/ A	ND	
1,2,4- Trichlorobenzene	N/A	ND	Carbaryl	N/A	ND	MTBE	N/ A	ND	
1,3 - Dichloropropane	N/A	ND	Chloroethane	N/A	ND	N - Butylbenzene	N/ A	ND	
1,3 - Dichloropropene	N/A	ND	Chlorodibromomethane	N/A	0.18	Naphthalene	N/ A	ND	
1,3,5 - Trimethylbenzene	N/A	ND	Chloroform	N/A	1.47	N-Propylbenzene	N/ A	ND	
2,2 - Dichloropropane	N/A	ND	Chloromethane	N/A	ND	O-Chlorotoluene	N/ A	ND	
3- Hydroxycarbofura n	N/A	ND	Dibromochloromethane	N/A	0.18	P-Chlorotoluene	N/ A	ND	
Aldicarb	N/A	ND	Dibromomethane	N/A	ND	P-Isopropyltoluene	N/ A	ND	
Aldicarb Sulfone	N/A	ND	Dichlorodifluoromethane	N/A	ND	Propachlor	N/ A	ND	
Aldicarb Sulfoxide	N/A	ND	Dieldrin	N/A	ND	Sec - Butylbenzene	N/ A	ND	
Aldrin	N/A	ND	Fluorotrichloromethan	N/A	ND	Tert - Butylbenzene	N/ A	ND	

Table of Detected Drinking Water Contaminants									
CONTAMINANT	MCLG	MCL	Range			Amount 1	Detected	Likely Source of Contamination	
		Bacteriolo	gical Cont	aminants	s Janu	ary - Decen	ber 2022		
Total Coliform Bacteria Turbidity	0	< 5% TT				ND 0.74	Present or Absent NTU	Naturally present in the environment Soil runoff	
Turbiaity	U		gical Conta	minante	Ionno	ry - Decemb		Son funon	
		Kaulolog	icai Conta	illillalits	Janua	ly - Deceill			
Combined Radium 226 & 228	0	5				1.5	pCi/L	Erosion of natural deposits	
Inorganic Contaminants January - December 2022									
Barium	2	2	0.017	-	0.038	0.038	ppm	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
Chlorine	MRDLG 4	MRDL 4	0.52	-	1.60	1.06	ppm	Water additive used to control microbes	
Copper	1.3	10 Sites AL=1.3	No. of Sit	es above a 0	ction level	0.86	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Fluoride	4	4	0.31	_	0.98	0.65	ppm	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	
Lead	0	10 Sites AL=15	No. of Sit	es above a 0	ction level	0.003	ppb	Corrosion of household plumbing systems, erosion of natural deposits	
Total Nitrate & Nitrite	10	10	0.63	_	0.69	0.65	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Haloacetic Acids (HAA5)	0	60	0	_	5.6	5.6	ppb	By-product of drinking water chlorination	
Total Organic Carbon (TOC)	N/A	ТТ	0.4	_	1.60	1.0	ТТ	Naturally present in the environment	
Total trihalomethanes (TTHM)	0	80	0	-	16.6	16.6	ppb	By-product of drinking water chlorination	
		Seconda	ary Contan	ninants	Januar	y - Decemb	er 2022		
Chloride	N/A	250	14.6	-	19.7	17.1	ppm	Naturally occurring in the environment or as a result of agricultural runoff	
Copper	N/A	1	ND	-	1.5	1.5	ppm	Erosion of natural deposits; leaching from pipes	
Iron	N/A	0.3	ND	-	ND	ND	ppm	Erosion of natural deposits	
Sulfate	N/A	250	10.0	-	10.3	10.1	ppm	Naturally occurring in the environment	
Total Dissolved Solids	N/A	500	188.00	-	256.00	222.00	ppm	Erosion of natural deposits	

Zinc	N/A	5 Specis	ND	- nants	.3	.3 - December	ppm	Erosion of natural deposits
Manganese	N/A	N/A	ND	-	ND	ND	ppm	Erosion of natural deposits
рН	N/A	N/A	7.99	-	8.30	8.15	SU	Naturally occurring in the environment or as a result of treatment with water additives
Sodium	N/A	N/A	ND	-	ND	ND	ppm	Naturally occurring in the environment
Total Hardness (as CaCO3)	N/A	N/A	152.00	-	161.00	156.50	ppm	Naturally occurring in the environment or as a result of treatment with water additives
		Unregula	ated Conta	minants	Janua	ry - Decemb	per 2022	
Bromodichloromethane	N/A	N/A	ND	•	.003	.003	ppb	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff; by-product of chlorination
Chlorodibromomethane	N/A	N/A	ND	-	ND	ND	ppb	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff; by-product of chlorination
Chloroform	N/A	N/A	.001	-	.011	.011	ppb	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff; by-product of chlorination
Dibromochloromethane	N/A	N/A	ND	•	.001	0.001	ppm	Naturally occurring in the environment

The City of Margaret purchases water from the City of Trussville. We are under their guidance and sampling of their water source. Water Systems are selected by The Environmental Protection Agency (EPA) to participate in the Unregulated Contaminant Monitoring (UCMR) program to collect nationally representative data for contaminants suspected to be present in drinking water. These contaminants do not have regulatory standards. The monitoring period is between 2018 – 2020. This monitoring is used by the EPA to understand the frequency and level of occurrence of unregulated contaminants in the nation's public water systems. Every five years the EPA develops a new list of UCMR contaminants, largely based on the Contaminant Candidate List (CCL). The detection of a UCMR contaminant does not represent cause for concern, in and of itself.

Trussville Gas and Water has completed additional testing for PFAS in 2021, as required by Alabama Department of Environmental Management (ADEM). Those results are also included in this table.

TABLE OF DETECTED UCMR 4 CONTAMINANTS AND PFAS

Contaminant	Minimum Reporting Level (MRL/ug/L)	Reference Concentration (ug/L)	Range Detected	Additional Information
Bromide	NA	NA	20 - 20	An indicator for HAA
Bromochloroacetic Acid	NA	NA	0.43 - 0.85	By-products of drinking water chlorination
Bromodichloroacetic Acid	NA	NA	ND - 0.96	By-products of drinking water chlorination
Chlorodibromoacetic Acid	NA	NA	ND - 0.60	By-products of drinking water chlorination
Dibromoacetic Acid	NA	NA	ND - 0.43	By-products of drinking water chlorination
Dichloroacetic Acid	NA	NA	0.70 - 1.8	By-products of drinking water chlorination
Haloacetic Acids	NA	NA	ND - 2.5	By-products of drinking water chlorination
Trichloroacetic Acid	NA	NA	ND - 0.75	By-products of drinking water chlorination
Perfluoroctane Sulfonic Acid (PFOS)	NA	NA	ND - ND	Interim Health Advisory Limit for PFOS is 0.00002 ug/L
Perfluoroctanoic Acid (PFOA	NA NA	NA	ND - ND	Interim Health Advisory Limit for PFOA is 0.000004 ug/L
Perfluorohexane Sulfonic Aci	d NA	NA	ND - 0.00095	No Health Advisory Limit established
Perfluorobutane Sulfonic Aci	d NA	NA	ND - 0.0028	Final Health Advisory Limit for PFBS is 2.0 ug/L

Note: EPA has introduced interim health advisory limits for PFOA and PFOS. The interim health advisory limit for PFOS is 0.00002 ug/L. The interim health advisory limit for PFOA is 0.000004 ug/L. The new health advisory limits are lower than the amount which can be detected with current laboratory technology.